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Part 1:
Introduction to
packetdrill



What is packetdrill?

● Packetdrill is a scripting tool for unit-testing network stacks 
● For entire TCP/UDP/IPv4/IPv6 network stacks

○ From the system call layer down to the NIC hardware
● Works on Linux, FreeBSD, OpenBSD, and NetBSD; ports exist for MacOS
● Has two execution models for testing network stack behavior:

○ Local: Within a single machine using a tun virtual network device (for speed and ease)
○ Remote: Over a physical NIC on a physical LAN (for testing real drivers and NICs)

● Enables quick, precise (packet-header-level), reproducible, automated tests
● Open source since 2013

○ License: GPLv2, same as Linux kernel
● Interpreted, for fast edit/test cycles

○ Even on production machines w/o build tools



When is packetdrill useful?

● In what phases of software development is it useful?
○ Testing new changes, fixes, or features during development

■ Using black box unit tests
○ Automated regression testing

■ More precise and reproducible than netperf, load tests, or production testing
○ Troubleshooting

■ To replay traces, reproduce issues, test what-if theories
● What aspects of network stacks can it test?

● Correctness - does the protocol implement the spec?
● Reliability - does the state machine handle challenging corner cases well?
● Interoperability - does it handle the kind of packets other stacks send?
● Performance - are congestion control, loss recovery algorithms correct? (in tricky cases?)
● Security - how does handle malicious messages?



When not to use packetdrill...

● What kinds of network testing is packetdrill not suited for?
○ High-speed or long-duration performance testing (e.g., CPU usage, throughput, latency)

■ Instead, use neper or netperf or iperf/iperf2/iperf3
○ Testing protocols above layer 4  (e.g., HTTP, etc.)

■ Instead, use load testing tools
○ Fuzzing

■ Instead, use: syzkaller

https://github.com/google/neper
https://en.wikipedia.org/wiki/Load_testing
https://github.com/google/syzkaller


packetdrill scripting language: design goals

● Interpreted
○ For fast edit/test cycles (no make/compile/link/scp required)
○ Even on production machines w/o build tools

● Easy to write/ read for kernel network stack developers accustomed to...
○ Writing/reading C code
○ Looking at strace dumps to understand application system call interactions w/ the kernel
○ Looking at tcpdump traces to understand network stack behavior on the wire

● Feasible to turn strace + tcpdump traces from production into test cases
● Encourage simple, succinct tests

○ Encourages each script to be simple and easy to write and read
○ A description of one simple scenario
○ No conditionals, loops, or variables



packetdrill scripting language: design elements

● Comments
● System calls
● Packets
● Shell commands
● Python scripts



packetdrill: comments

● Comments
○ Document the intent for readers/maintainers

● Syntax:
○ C or C++ syntax

Examples:

/* C-style comments work */
// C++-style comments work



packetdrill: system calls

● System calls: strace-like syntax
○ system calls to invoke
○ output/return value to expect
○ blocking or non-blocking  (only one blocking system call at a time)

● Syntax:
○ strace-like syntax

Example:

setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0



packetdrill: packets

● Packets: tcpdump-like syntax
○ inbound packets to construct and inject into the network stack under test
○ outbound packets to expect and sniff and verify wrt timing and contents
○ TCP, UDP, ICMP

● Syntax:
○ tcpdump-like packet syntax prefixed by a pipe-inspired < (inbound) or > (outbound) specifier

Examples:

Inbound (inject):
 < S 0:0(0) win 32792 <mss 1000,nop,nop,sackOK,nop,wscale 6>

Outbound (expect/sniff/verify):
 > S. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 7>



packetdrill: shell commands

● shell commands
○ To configure or inspect the machine under test
○  May use: ip, sysctl, tc, set device/module parameters ...

● Syntax:
○ Regular bash commands enclosed in single-tick quotes: ` `

Example:

`sysctl -q net.ipv4.tcp_congestion_control=cubic`



packetdrill: Python scripts

● Python scripts
○ Used to check/print internal socket state: TCP_INFO, TCP_CC_INFO, SO_MEMINFO

● Syntax:
○ Regular Python code enclosed in %{ }% braces
○ Can be multi-line scripts that assert, define and call Python functions, print output, etc.

Example:

%{ assert tcpi_snd_cwnd == 7 }%



packetdrill: specifying event times

● Every event in a packetdrill script starts with a time specifier: "when should this happen?"
● packetdrill allows flexibility in timing assertions
● Supported timing models:

○ Absolute: 0.100 // event should happen 100ms since test start
○ Relative: +0.100 // should happen 100ms since previous event
○ Range: 0.100~0.200 // should happen 100ms to 200ms since test start
○ Relative range: +0.100~+0.200 // should happen 100ms to 200ms since previous event
○ Wildcard: * // test doesn't care; event can happen any time

● Checking time:
○ Timing is critical for reliability and performance (loss recovery, congestion control, etc)
○ When a network stack event happens at an unexpected time, packetdrill raises a test failure
○ To avoid flakes, the default tolerance for timing variation: 4ms
○ Command line option to change the tolerance for all events (useful for debug or KASAN kernels):

■ --tolerance_usecs=8000
● blocking system calls

○ Provide a specified start and an expected end time separated by ...
○ Syntax: 0.100...0.200



packetdrill: setup and cleanup

● A test can use two special (optional) commands for Setup and Cleanup
○ If specified, they are always run, even if a test fails
○ They do not have a time specifier (their time is implicitly the start and end of the test, respectively)
○ Their execution is not timed, so can be as slow as it needs to be

● Setup:
○ Intended to set initial host / namespace configuration  via: ip, tc, sysctl, etc...

● Cleanup:
○ Intended for checking behavior and cleaning up any changes made in setup
○ Always runs at test conclusion, even if test fails in the middle

Example:

// Setup: this test will specifically test reno congestion ctrl:
`sysctl -q net.ipv4.tcp_congestion_control=reno`

// ...timed system calls and packets to test reno...

// Cleanup: Now let's restore our state; always runs, even if test fails
`sysctl -q net.ipv4.tcp_congestion_control=cubic`



The packetdrill ellipsis construct: ...

● ... means "I don't care about this detail; just make it work"
○ Tells packetdrill to fill in boring boilerplate in the expected way to make things work

● Handy for several reasons:
○ 1: Eases writing of tests: you don't have to choose details to use (addresses, buffer contents) 
○ 2: Eases reading of tests: you don't have to read unimportant details
○ 3: Allows scripts to be reused by being agnostic about details that can vary

■ Address family (AF_INET/AF_INET6) or addresses can vary



IP versions: ipv4, ipv6, ipv4-mapped-ipv6 

● packetdrill supports 3 IP address family modes:
○ ipv4 AF_INET sockets, IPv4 packets and addresses
○ ipv6 AF_INET6 sockets, IPv6 packets and addresses
○ ipv4-mapped-ipv6 AF_INET6 sockets, IPv4 packets and addresses

● Specify the mode on the command line via --ip_version flag:
○ --ip_version=[ipv4,ipv4-mapped-ipv6,ipv6]

● Best practice: test scripts are written to be run in all 3 modes using ...
○ All address-family-specific system call inputs/outputs are elided with ...

0   socket(..., SOCK_STREAM, IPPROTO_TCP) = 3
+0  setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0
+0  bind(3, ..., ...) = 0
+0  listen(3, 1) = 0
// SYN/SYNACK/ACK packets go here
+0  accept(3, ..., ...) = 4



Putting it all together...

● The following slide has a complete example packetdrill script
○ Testing loss recovery (fast recovery) and congestion control (CUBIC)
○ A typical packetdrill test for Linux TCP



// Test Fast Recovery and CUBIC cwnd response to Fast Recovery.
`sysctl -q net.ipv4.tcp_congestion_control=cubic`  // shell command configures host

0   socket(..., SOCK_STREAM, IPPROTO_TCP) = 3           /* C-style comments work */
+0  setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 // C++-style comments work
+0  bind(3, ..., ...) = 0
+0  listen(3, 1) = 0
+0  < S 0:0(0) win 32792 <mss 1000,nop,nop,sackOK,nop,wscale 6>
+0  > S. 0:0(0) ack 1 <...>       // <...> means: don't care about outgoing options
+.1 < . 1:1(0) ack 1 win 257
+0  accept(3, ..., ...) = 4

+0  %{ assert tcpi_snd_cwnd == 10 }%  // check socket state from TCP_INFO
+0  write(4, ..., 4000) = 4000        // ask kernel under test to send 4 packets
+0  > P.  1:4001(4000) ack 1          // expect to sniff data pkts w/ these seqs/flags

+.1 < . 1:1(0) ack 1 win 257 <sack 1001:2001,nop,nop> // inject dupack #1
+0  < . 1:1(0) ack 1 win 257 <sack 1001:3001,nop,nop> // inject dupack #2
+0  < . 1:1(0) ack 1 win 257 <sack 1001:4001,nop,nop> // inject dupack #3
+0  > . 1:1001(1000) ack 1 // immediately after 3 dupacks we expect a fast retransmit!

+.1 < . 1:1(0) ack 4001 win 257                       // retransmit repaired loss
+0  %{ assert tcpi_snd_cwnd == 7 }%  // check CUBIC cwnd was cut by expected 30%

Key: BLACK: system call    (strace syntax)
BLUE:  input: incoming injected packet    (tcpdump-style syntax)
RED:   output: outgoing sniffed packet     (tcpdump-style syntax)
GREEN: Python script                       (Python code)



packetdrill local and remote modes

● Two execution models for testing network stack behavior:
○ Local: Within a single machine using a tun virtual network device (for speed and ease)

■ Single-machine testing using TUN virtual network device
● Tests sockets, L4 (TCP/UDP/ICMP), L3 (IP)

■ A single packetdrill process
● Runs system calls and shell commands
● Injects packets via tun virtual network device, sniffs and verifies packets via tun

○ Remote: Over a physical NIC on a physical LAN (for testing real drivers and NICs)
■ Two-machine testing of real NICs over a LAN

● Tests L4, L3, L2, L1, including driver, offload mechanisms, NIC, LAN
■ Machine 1: a client packetdrill process running on the kernel under test

● Runs system calls and shell commands
■ Machine 2: a server packetdrill process running on a remote machine

● Injects packets over real LAN, sniffs and verifies packets over real LAN



Running a packetdrill test in local mode

● Local mode is the default mode for test execution
● Run a packetdrill process as root on a single machine
● Need to provide:

○ The list of path names of script to execute
● Example:

test_machine# ./packetdrill foo.pkt
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Running a packetdrill test in remote mode

● Remote mode requires an extra parameter for test execution
● Run a packetdrill process as root on two machines: a client and a server
● Need to provide:

○ The list of path names of script to execute
○ The DNS name or IP address of the server machine

● Example:

server_machine# ./packetdrill --wire_server

client_machine# ./packetdrill --wire_server_at=1.2.3.4 foo.pkt
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Reusing scripts between local and remote mode

● The same test can be executed in both local mode and remote mode
● This works as long as network stack behavior asserted by test is the same
● Note: Sometimes MTU/MSS are different on different devices

○ Tests can often simply work around this with <...> to skip checking options
○ The earlier example script can run in both local and remote mode using this one weird trick



Part 2:
The basics of using
packetdrill



Varieties of packetdrill

● There are several varieties/forks of packetdrill:
○ Original packetdrill by our team at Google:

■ https://github.com/google/packetdrill
○ Version with support for MPTCP, concurrent connections:

■ https://github.com/aschils/packetdrill_mptcp
○ The nplab packetdrill: supports UDPLite, SCTP, FreeBSD, MacOS:

■ https://github.com/nplab/packetdrill
○ A packetdrill for QUIC, at Apple:

■ 'Testing QUIC with packetdrill'
■ Unreleased (so far)

https://github.com/google/packetdrill
https://github.com/aschils/packetdrill_mptcp
https://github.com/nplab/packetdrill
https://dl.acm.org/doi/pdf/10.1145/3405796.3405825


packetdrill test suites for Linux

● Current test suite status
○ In 2024 (Linux v6.12), 72 tests added to Linux tree (e.g. tools/testing/selftests/net/packetdrill) 
○ 167 in Github at https://github.com/google/packetdrill
○ Over 1100 internally used by our team

■ For 13 years the Google Linux kernel networking team has used packetdrill scripts as a 
core part of continuous testing of the production kernel used on Google's machines

■ Gradually open-sourcing (Google => mainline) and porting (github => mainline)
● Example areas of coverage for Linux TCP (gtests/net/tcp/ subdirectories):

blocking         epoll            limited_transmit  sendfile         ts_recent
close            fast_recovery    md5               shutdown         user_timeout
common           fast_retransmit  mss               slow_start       validate
cubic            fastopen         mtu_probe         splice           zerocopy
cwnd_moderation  gro              nagle             syscall_bad_arg
ecn              inq              notsent_lowat     tcp_info
eor              ioctl            sack              timestamping

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/tree/tools/testing/selftests/net/packetdrill
https://github.com/google/packetdrill
https://github.com/google/packetdrill/tree/master/gtests/net/tcp


Downloading and building Google packetdrill

● First install the dependencies

sudo apt install git gcc make bison flex python net-tools  # for Debian/Ubuntu

● Then download the source code from https://github.com/google/packetdrill

git clone https://github.com/google/packetdrill.git

● Then build the packetdrill binary

cd ~/packetdrill/gtests/net/packetdrill

./configure

make

https://github.com/google/packetdrill


Running the github packetdrill test suite for Linux

● To run all tests in the packetdrill Linux test suite at 
https://github.com/google/packetdrill ...

● The easiest way is to use the run_all.py script by Willem de Bruijn:

cd ~/packetdrill/gtests/net/

sudo ./packetdrill/run_all.py -S -v -l tcp/

● This runs all test scripts with all 3 supported address families
○ ipv4, ipv6, ipv4-mapped-ipv6 (IPv6 sockets w/ IPv4 addresses)

● Explaining the command line options (see: ./packetdrill/run_all.py --help):
○ -S --serialized (run one test at a time; slower than parallel; avoids timing flakes)
○ -l --log_on_error (print stderr and stdout for failed tests)
○ -v --verbose (required for --log_on_error)

https://github.com/google/packetdrill


Main types of packetdrill errors

● Syntax errors
● Semantic errors (e.g., packet size doesn't match sequence number range)
● System call errors

○ Return value or completion time of blocking system call did not match expectations
● Packet errors

○ Contents or timing of outbound packet did not match expectations
○ Timed out waiting for outbound packet

● Shell command errors
○ Non-zero exit status (e.g., grep nstat output to check SNMP counter values)

● Python errors, including assertion failures
○ Show Python output and Python stack trace



How to interpret packetdrill test failures

● Packetdrill error message format:
○ <script_file_name>:<line_number>: <error_details>

● Example:

● How to interpret this error:
○ Script named test.pkt had an error on line 21
○ The script expected to sniff an outbound packet at time 0.200812 that looked like:

■ . 3001:4001(1000) ack 1 
○ The network stack under test instead actually sent a packet at time 0.200808 that looked like:

■  . 1:1001(1000) ack 1 win 502
○ So basically the network stack sent a packet with an unexpected TCP sequence number range

Script line:
+0  > . 3001:4001(1000) ack 1 // immediately after 3 dupacks we expect a fast retransmit!

Error:
test.pkt:21: error handling packet: live packet field tcp_seq: expected: 3001 (0xbb9) vs actual: 1 (0x1)
script packet:  0.200812 . 3001:4001(1000) ack 1 
actual packet:  0.200808 . 1:1001(1000) ack 1 win 502 



Troubleshooting packetdrill test failures

● If a test fails, it can be useful to re-run and acquire more data
● 3 levels of detail can often be useful:

○ Run packetdrill with --verbose
■ Shows which system calls and packets happen, and when
■ Shows all variable values from TCP_INFO, etc, that are available in Python

○ Run packetdrill with --debug
■ Packetdrill shows function-level gory details
■ Useful for debugging packetdrill itself

○ Use strace on packetdrill and tcpdump in parallel
■ sudo tcpdump -n -i any port 8080 &
■ sudo strace -ttt --follow-fork packetdrill foo.pkt

● -ttt for microsecond-level timestamps
● --follow-fork to trace all threads



High-level advice for writing packetdrill tests

● Standard advice for writing unit tests applies...
● Add comments for future readers/maintainers (they will be debugging failures)

○ At top of file, explain what behavior is being tested/verified
○ Explain the key moments of stimulus/input: // Here we inject a special X packet ....
○ Explain the expected result: // Here we expect the kernel to send a Y packet because Z:

● Keep tests small and focused
○ And make test names clearly convey the functionality/scenario being tested
○ Eases review, maintenance, interpreting and root-causing failures

● Don't assert/check outside that focus (i.e., behavior test isn't focusing on)
○ e.g., only tests specifically for TCP receive window code should check receive window values
○ Minimizes/focuses toil/churn when the network stack behavior changes

● Make dependencies minimal and explicit
○ Avoid assuming specific config (receive buffer size, congestion control,...) because these vary
○ But if a test depends on something, set or check that explicitly



Best practices for configurations and network namespaces

● (1) Have a script to set config values you expect (sysctl / module parameters)
● (2) Run packetdrill tests inside a network namespace

○ Avoids tests accidentally changing global config parameters
○ Changing global config parameters can cause mysterious/hard-to-debug test failures

■ e.g., congestion control algorithm, receive buffer sizes, etc
● (3) Have explicit tests for the sysctl parameters you care about

○ There can be bugs (e.g., conflict resolution bugs) in simple code to initialize sysctl parameters
○ These can be hard to find if you are using (1)
○ So have tests that check:

■ Default global sysctl parameter values
■ Default values for per-netns sysctl values



Ways to integrate packetdrill into your workflow

● Can be useful:
○ Reproducing bugs or replaying traces
○ Testing what-if theories
○ git commit message documentation for bug fixes or feature additions

● Highly recommended:
○ Unit tests during network stack development (bug fixes, new features)
○ Running full regression suite before sending changes for review/merge
○ Automated continuous regression testing in a CI/CD pipeline (smp, debug, KASAN)



Contributing patches for packetdrill

● We are happy to incorporate fixes into packetdrill
○ And small-to-medium-sized features, as time permits!

● To contribute patches, please follow the recipe here; mainly:
○ Join the packetdrill mailing list on Google groups
○ Verify that you can certify the origin of your code with a Signed-off-by footer, according to the 

standards of the Linux open source project
○ Use scripts/checkpatch.pl from the Linux source tree to check the style of the C code
○ Please use a commit first/summary line like:

■ net-test: packetdrill: add new packetdrill support for foo
■ net-test: add new test cases for foo feature

○ Two ways to submit patches:
■ Github pull request
■ Use git commit/format-patch/send-email to the packetdrill mailing list on Google groups

https://github.com/google/packetdrill?tab=readme-ov-file#how-to-submit-a-patch-for-packetdrill
https://groups.google.com/g/packetdrill
https://www.kernel.org/doc/html/v4.17/process/submitting-patches.html#developer-s-certificate-of-origin-1-1
https://github.com/torvalds/linux/blob/master/scripts/checkpatch.pl
http://requests
https://groups.google.com/g/packetdrill


Part 3:
Advanced packetdrill 
techniques



Tips on MSS and MTU

● Making tests work with all address families
○ Use --mtu=1520 with ipv6, since IPv6 headers are 20 bytes bigger
○ run_all.py handles this detail when running tests w/ all 3 address family modes

● For easy writing/reading of seq/ack, it's easiest to make MSS 1000



Tips on reducing timing flakes

● Use relative timestamps when possible
○ They avoid failures due to accumulating timing errors due to CPU / timer slowness

● Be careful with shell commands
○ They can take tens of milliseconds due to disk seeks, machine-wide synchronization, etc
○ So try to only use them in setup/cleanup blocks, which are untimed

● Be careful with exponential backoff in RTOs
○ Exponential backoff magnifies noise
○ Linux jiffy-granularity timers are up to 12.5% slower than you expect due to timer wheel impl
○ You may need to allow a relative range:

■ +0.100~+0.200 // should happen 100ms to 200ms since previous event

https://web.git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/tree/kernel/time/timer.c


Defining symbols from command line with -D name=val

● Sometimes you want to reuse a test script with slight twists
○ e.g., some aspects of IPv4 and IPv6 differ beyond IP addresses

● packetdrill scripts can use generic symbols
● Invocations define macro-style symbols from command line with -D name=val

○ Much like:  gcc -D name=val ...
● run_all.py includes some standard mappings; for example:

A script can use something like:
  cmsg_type=CMSG_TYPE_RECVERR,
  cmsg_data={ee_errno=ENOMSG,

For IPv4 run_all.py invokes packetdrill with:
  -D CMSG_LEVEL_IP=SOL_IP -D CMSG_TYPE_RECVERR=IP_RECVERR

For IPv6 run_all.py invokes packetdrill with:
  -D CMSG_LEVEL_IP=SOL_IPV6 -D CMSG_TYPE_RECVERR=IPV6_RECVERR



Testing ICMP with packetdrill

● Useful for testing how TCP and UDP deal with incoming ICMP errors
● For example, testing how TCP handles packets that are too big:

// TCP/IPv6 PMTU discovery:                                                                                                                                           
   +0 write(4, ..., 1460) = 1460
   +0 > P. 1:1461(1460) ack 1
// ICMP says that segment was too big:                                                                                                                             
   +0 < icmp packet_too_big mtu 1280 [1:1461(1460)]
// TCP picks a packet size using the MTU from the message, and retransmits ASAP:                                                                                        
   +0 > P. 1:1461(1460) ack 1

// TCP/IPv4 PMTU discovery:                                                                                                                                           
   +0 write(4, ..., 1460) = 1460
   +0 > P. 1:1461(1460) ack 1
// ICMP says that segment was too big:                                                                                                                             
+.005 < icmp unreachable frag_needed mtu 1200 [1:1461(1460)]
// TCP picks a packet size using the MTU from the message, and retransmits ASAP:                                                                                        
   +0 > P. 1:1461(1460) ack 1



Testing UDP with packetdrill

● Useful for testing how UDP deals with MTU, incoming ICMP errors, TOS, etc.
● For example:

// Create and connect a UDP socket:
    0 socket(..., SOCK_DGRAM, IPPROTO_UDP) = 3
 +.01 connect(3, ..., ...) = 0
   +0 getsockopt(3, IPPROTO_IP, IP_MTU, [1500], [4]) = 0

// Send the biggest possible UDP/IPv4 packet (without fragmentation).                                                                                              
   +0 write(3, ..., 1472) = 1472
   +0 > udp (1472)

// Check behavior with an MTU of net.ipv4.route.min_pmtu = 552 (512 + 20 + 20)                                                                                     
 +.01 < icmp unreachable frag_needed mtu 552 [udp (1472)]

// Verify we get an EMSGSIZE upon read() and can also read incoming packets:
 +.01 < udp (1472)
   +0 read(3, ..., 2000) = -1 EMSGSIZE (Message too long)
   +0 read(3, ..., 2000) = 1472



Encapsulation

● packetdrill can inject/sniff any combo of several common encap formats:
○ IPv4, IPv6, GRE, MPLS

● Syntax: separate encap header specs with : (colon) characters
● Examples:

// IPIP encap:
+0 > ipv4 1.1.1.1 > 2.2.2.2 : . 1:1001(1000) ack 1
// Double IPv6 encap:
+0 > ipv6 1::1111 > 2::2222: ipv6 3::3333 > 4::4444: . 1:1001(1000) ack 1
// Simple IPv4/GRE encap:
+0 > ipv4 1.1.1.1 > 2.2.2.2: gre: . 1:1001(1000) ack 1
// GRE encap with all GRE header fields specified:
+0 < ipv4 2.2.2.2 > 1.1.1.1 :
      gre flags 0xb000, sum 511, off 1023, key 0x80001234, seq 512 :
      . 1:1001(1000) ack 1 win 123                 
// GRE plus 2-entry MPLS encap:                                                                                                                                     
+0 < ipv4 2.2.2.2 > 1.1.1.1 : gre :
     mpls (label 0, tc 0, ttl 0) (label 1048575, tc 7, [S], ttl 255) :
     . 1:1001(1000) ack 1 win 123



ECN: Explicit Congestion Notification

● packetdrill allows specifying the 2-bit ECN field in packets
● Useful for testing various flavors of ECN: Classic, DCTCP, L4S
● Syntax:

[noecn] IP ECN field is 00; Not-ECT sender transport (e.g., TCP) does not support ECN 

[ect0] IP ECN field is 10, ECT(0) sender indicates “ECN-Capable Transport” (Classic)

[ect1] IP ECN field is 01, ECT(1) sender indicating “ECN-Capable Transport” (L4S)

[ce] IP ECN field is 11, CE set by network element to say “Congestion Experienced”

Example: injecting a packet with CE

+0 < [ce] P. 4001:4501(500) ack 3 win 257

https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc8257
https://datatracker.ietf.org/doc/html/rfc9331
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc9331


Other IP header fields: TOS, flowlabel, TTL

● Packetdrill can set and check other interesting IP header fields...
● tos:  ToS / QoS / DSCP / Traffic Class  (packetdrill uses tos for both IPv4 and IPv6)

○ Useful for testing rx or tx processing of ToS, e.g. ToS reflection

● flowlabel: IPv6 flowlabel
○ Useful for testing outgoing flowlabel for PLB load balancing [SIGCOMM '22], Protective ReRoute [SIGCOMM '23]

● ttl: TTL / Hop Limit  (packetdrill uses ttl for both IPv4 and IPv6)
○ Useful for testing rx or tx processing of TTL

// Inject SYN with tos 0x80 and verify outgoing SYNACK reflects incoming TOS:
+.1 < (tos 0x80) S 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 2>
 +0 > (tos 0x80) S. 0:0(0) ack 1 <...>

// Verify outgoing flowlabel matches (or is different from) previous flowlabel:
+0 > (flowlabel 0x1) P. 1001:2001(1000) ack 1 

// Inject packet with TTL 100
+0   < (ttl 100) . 1:1(0) ack 201 win 1000

https://dl.acm.org/doi/10.1145/3544216.3544226
https://dl.acm.org/doi/10.1145/3603269.3604867


Part 4:
Wrapping up



For more information about packetdrill

● The Google packetdrill README at: https://github.com/google/packetdrill
● packetdrill: Scriptable Network Stack Testing, from Sockets to Packets

○ 2013 USENIX ATC
● Drilling Network Stacks with packetdrill

○ Usenix ;login: October 2013
● packetdrill mailing list on Google groups

https://github.com/google/packetdrill
https://www.usenix.org/conference/atc13/technical-sessions/presentation/cardwell
https://www.usenix.org/system/files/login/articles/10_cardwell-online.pdf
https://groups.google.com/g/packetdrill


The future...

Some features/directions that seem 
useful (contributions are welcome!)...

● A "black box recorder" option that 
will, upon test failure, dump a 
timestamped log of all test activity

○ To speed troubleshooting, especially for 
failed tests in automated test runs

● Optional Integration with UML and 
"Time Travel Mode" (NetDev 0x14)

○ To speed testing by running test suite in 
user mode on simulated time instead of 
booting a kernel and running on wall 
clock time

https://netdevconf.info/0x14/session.html?talk-time-travel-linux-network-simulation


Conclusions

● Our team finds packetdrill useful for automated unit tests for Linux networking
○ We hope you'll find it useful too!

● Some packetdrill tests are now in mainline Linux: tools/testing/selftests/
● Please join us to make things even better in this open source ecosystem:

○ Contributing features/fixes for packetdrill
○ Contributing to the suite of packetdrill tests for Linux networking
○ Helping port packetdrill tests from: github => mainline or Google => mainline

● Thanks!


